ЛОО на уроках химии.

Категория: Методическая работа
Опубликовано 11.10.2013 11:57
Автор: Семёнова М.А.
Просмотров: 5934

ЛИЧНОСТНО-ОРИЕНТИРОВАННОЕ ОБУЧЕНИЕ НА УРОКАХ ХИМИИ. 

Личностно-ориентированные технологии:

Личностно-ориентированные технологии имеют следующие особенности

Личностно-ориентированная педагогика открывает новые принципиальные подходы и тенденции в решении вопросов «чему» и «как» учить сегодня

На личностно-ориентированном уроке создается та учебная ситуация, когда не только излагаются знания, но и раскрываются, формируются и реализуется личностные особенности учащихся. На таком уроке господствует эмоционально положительный настрой учащихся на работу.

Учитель не просто создает благожелательную творческую атмосферу, он признает самобытность и уникальность каждого обучаемого.

В рамках ЛОО как самостоятельные технологии можно выделить: разноуровневое обучение, коллективное взаимообучение, модульное обучение, технологию проектного метода, игровые и информационно-коммуникативные технологии, технологию сотрудничества. В своей работе активно использую четыре основные технологии ЛОО:


Технология уровневой дифференциации

В связи с многообразием школьных программ и учебников, разработкой и утверждением обязательного минимума содержания образования остается актуальной реализация дифференцированного подхода к учащимся не только в рамках профилизации классов и школ, но и прежде всего, в более массовом варианте, в наиболее распространенных обычных классах школ, в которых некоторым учащимся достаточно минимального уровня овладения материалом, а другим необходима его глубокая проработка.

Цель технологии уровневой дифференциации:

Теоретические позиции:

Методическая основа:

Учебная деятельность предполагает четкое планирование учебного процесса:

Концептуальные положения:

Результаты:

 

При формировании химических понятий и предметных умений в процессе обучения химии в средней школе большое значение имеет качество формируемых знаний. Важная характеристика качества знаний — их системность, т. е. четкое осознание связей между отдельными элементами знаний: содержательно — логических связей между элементами теоретических знаний или между теоретическим и фактическим материалом, причинно — следственных зависимостей состава, строений, свойств и применение веществ. Осознанность знаний проявляется в умении их использовать в практике, объяснять и предсказывать факты и явления, раскрывать логику материала, грамотно и весомо аргументировать оценочные суждения и прочее.

Элементы уровневой дифференциации начинаю вводить на уроках в 8 классе. Даю возможность детям заранее знать, к чему они должны быть готовы, какие знания должны усвоить очень четко. Тематические зачеты провожу по основным темам курса 8 класса. Зачеты провожу во время уроков, а пересдача после уроков. Итоговые вопросы к зачетам сообщаю заранее, а также контролирующие задания, аналогичные тем, что будут на зачете. Всего в 8 классе 4 зачета:

1 зачет — Первоначальные химические понятия

2 зачет — Кислород. Оксиды. Горение

3 зачет — Основные классы неорганических веществ

4 зачет — Периодический закон Д. И. Менделеева. Строение атома.

Получается 1 зачет в семестр.

Такие зачеты показали, что если ученик систематически занимается изучением материала темы, то ему сдать зачет легко. Отдельные учащиеся 1 группы успешности помогают учителю принимать зачет у остальных учащихся.

В Х класс практически каждой общеобразовательной школы приходят учащиеся, различающиеся не только способностями к обучению, но и уровнем знаний. Кроме того, лишь некоторые из них будут сдавать ЕГЭ или вступительный экзамены по химии. Остальных же интересует только отметка по предмету в аттестате. Если предъявлять к ним одни и те же требования, то процесс обучения станет для многих из них не только сложным, но и неинтересным. Технология уровневой дифференциации дает возможность учесть познавательные интересы всех учащихся, развивать каждого в меру его сил и способностей, не ограничивая при этом учителя в выборе методов, средств и форм обучения.

При изучении нового материала в старшей школе я использую лекции, семинарские занятия. В основе их содержания — подача материала блоками. На каждом уроке нацеливаю учащихся на достижение конкретных результатов при изучении темы. Веду текущий учет знаний учащихся, но главный итог их работы — тематический зачет.

Каждый зачет составляю, в основном, в виде тестов с выбором ответа, но не исключаю и традиционные задания (вопросы, цепочки превращений, расчетные задачи и т. д.). Готовлю обычно четыре варианта, включающие обязательную и дополнительную части. В кабинете химии на стенде «Готовимся к зачету» учащиеся могут познакомиться с требованиями к знаниям и умениям и примерами обязательных заданий по каждой теме. Это способствует созданию атмосферы эмоционального комфорта для всех учащихся.

Вопросы, обязательные для усвоения всеми учащимися, подробно объясняю. На каждом уроке обращаю внимание учащихся па стенд, подчеркиваю, над каким тематическим требованием работаем на данном уроке. Список обязательных заданий позволяет учащимся контролировать себя, определяя, насколько они усвоили изученный материал.

Первичное закрепление материала целесообразно проводить на самых простых примерах, постепенно наращивая сложность заданий. Поэтому для закрепления темы готовлю разноуровневые дидактические материалы, тщательно продумывая последовательность заданий, которая дает возможность всем учащимся включиться в работу и достичь только положительных результатов.

За 2-3 урока до тематического зачета провожу тренировочный зачет, включающий задания, аналогичные заданиям тематического зачета. В результате учащиеся могут объективно оценить свою подготовку к тематическому зачету, и имеют время ликвидировать пробелы в знаниях. Открытость, определенность требований вызывает у учащихся интерес к достижению поставленной цели. В случае неудачи, а также при желании получить более высокую отметку предоставляю учащимся возможность пересдать зачет.

Покажу на конкретном примере, как я составляю задания для тематического зачета с учетом уровневой дифференциации. Каждый зачет охватывает материал большого раздела, например «Кислородсодержащие органические вещества».

После изучения спиртов, альдегидов и карбоновых кислот провожу тренировочный зачет 1, после изучения сложных эфиров, жиров и углеводов — тренировочный зачет 2. Завершает изучение раздела «Кислородсодержащие органические вещества» тематический зачет, один из вариантов которого приведен ниже.

Зачет по разделу «Кислородсодержащие органические вещества»

Обязательная часть

1. Бензол, фенол, гексен можно определить при помощи группы реактивов

а) щелочь, лакмус, йодная вода

б) растворы щелочи, перманганата калия, соляная кислота

в) раствор хлорида железа(Ш), бромная вода, нитрующая смесь

2. Наличие альдегидной группы можно доказать с помощью

а) аммиачного раствора оксида серебра(1)

б) бромной воды

в) раствора щелочи

г) раствора гидроксида меди(П)

3. Карбоновые кислоты можно классифицировать как

а) одноосновные и многоосновные

б) одноатомные и многоатомные

в) низшие, высшие и предельные

4. Получение уксусного альдегида по реакции Кучерова отражает схема

а) С2Н5ОН -> СН3СОН + Н20

б) С2Н5ОН -> СН3СОН + Н2

в) С2Н2 + Н20 ± СН3СОН

г) С2Н2 + [О] -> СН3СОН

5. Сложные эфиры отличаются от простых

а) составом

б) строением молекул

в) свойствами

Подтвердите ответ конкретными примерами.

6. Осуществите превращения:

С2Н, ± СН3СН2ОН -> СН3СООН -> СН3СООСН3.

7. Какие виды изомерии характерны для кислородсодержащих органических соединений?

8. Объясните, почему спирты не проводят электрический ток, не изменяют реакцию среды.

9. Попадание мыла на слизистую оболочку глаз вызывает раздражение, так как в результате гидролиза мыла образуется щелочь. Составьте уравнение реакции гидролиза.

10. Определите массу фенолята калия, который можно получить из 20 г фенола и 20 г гидроксида калия.

Дополнительная часть

1. Изобразите электронную формулу фенола. Укажите стрелками сдвиг электронной плотности в молекуле. Объясните, чем вызвано проявление фенолом слабых кислотных свойств.

2. Для каких веществ, формулы которых приведены ниже, характерно образование межмолекулярной ВОДОРОДНОЙ СВЯЗИ:

С6Н6, С6Н5ОН, С6Н14, НО-СН2-СН2-ОН, НСООН?

Как это сказывается на их свойствах?

Каждое задание обязательной части оцениваю одним баллом, дополнительной — двумя. Набрав 8 баллов, учащийся получает «зачет»; если он выполнит 9 заданий обязательной части (9 баллов) и одно дополнительной (2 балла) — «4». Для получения отметки «5» учащийся должен справиться со всеми заданиями (10 баллов + 4 балла).

Вот уже в течение ряда лет я использую элементы технологии уровневой дифференциации и могу сделать вывод, что это позволяет учащимся реально оценивать возможности, а также видеть свои достижения. В результате повышается интерес к предмету, между учителем и учащимися устанавливаются партнерские отношения, снижается психологическое напряжение учащихся на уроках. Хочу отметить, что повысилось качество знаний и активность слабоуспевающих учащихся, да и у остальных знания стали более системными. Адекватной стала самооценка учащихся, исчез страх перед проверкой знаний. Анкетирование учащихся показало, что данный подход нравится и им, и их родителям, поскольку известны конкретные требования, которые предъявляет учитель к знаниям и умениям учащихся. Как положительный результат расцениваю и увеличение числа выпускников, выбирающих экзамен по химии и подтверждающих качество знаний при поступлении в высшие учебные заведения и при сдаче ЕГЭ.

Технология проектного метода

Метод проектов совокупность учебно-познавательных приемов, которые позволяют решить ту или иную проблему в результате самостоятельных действий учащихся в процессе обучения и вне его, с обязательной презентацией результатов.

Цели проектного обучения:

Теоретические позиции проектного обучения:

Формы представления конечного результата проектной работы:

Проектную работу на уроках химии и во внеурочной деятельности стараюсь привязать к решению вопросов сохранения здоровья ибо на сегодняшний день сохранение и укрепление здоровья населения — одна из наиболее актуальных проблем. Собственное здоровье и способы его сохранения интересуют учащихся, однако зачастую учащиеся не понимают, насколько важны в этой связи знания, полученные на уроках химии и считают, что им необходимы лишь точные рекомендации по поведению в той или иной ситуации. И только малая доля школьников осознает, что хорошая база теоретических химических знаний действительно дает возможность вникнуть в самую глубину проблемы, выявить первопричину нарушения здоровья, объяснить влияние данного фактора на организм человека и в итоге найти выход из сложившейся ситуации.

Однако совершенно недостаточно насытить химический материал информацией, которая заинтересует учащихся. По — моему мнению, не стоит также давать конкретные инструкции по поведению в какой-либо ситуации. Целесообразнее так построить процесс обучения, чтобы учащиеся смогли сами исследовать проблему и выработать эти рекомендации, т. е. реализовать проблемное обучение.

Для этого я прежде всего выявляю, какие вопросы, связанные с химией и валеологией, интересуют школьников: а) экологические проблемы; б) организация рационального питания; в) вопросы медицины и т. д. Затем совместно с учащимися выбираем для исследования один из них и конкретизируем его: а) загрязнение воды, воздуха, потепление климата и др.; б) состав продуктов питания, компоненты пищи, негативно влияющие на состояние здоровья, и др.; в) употребление и действие лекарств, побочные эффекты при их приеме и т. д. После этого предлагаю учащимся найти выход из выбранной ими ситуации, выслушиваю мнения. Далее разбиваю класс на группы. Каждая из них прорабатывает один из предложенных вариантов решения проблемы с точки зрения и химии, и валеологии: учащиеся изучают научно-популярную литературу, публикации периодической печати, посвященные данной проблематике, обсуждают все «за» и «против» и выбирают наиболее оптимальный вариант. На обобщающем уроке, который мы проводим в форме дискуссии, конференции, выступают представители групп. По итогам обсуждения их выступлений выявляем лучший способ решения предложенной проблемы. Все этапы работы на примере конкретной проблемы отражены на схеме.

Исследование путей уменьшения содержания углекислого газа в атмосфере в рамках проблемы «Атмосферные изменения, их влияние на состояние здоровья» провожу в IX классе при изучении темы «Подгруппа углерода».

Сначала я ознакомила учащихся с причинами увеличения содержания диоксида углерода в атмосфере и последствиями этого процесса. Снижение содержания этого — вещества в атмосфере не представляет опасности для здоровья, повышение же концентрации небезразлично для организма. При содержании в воздухе 3—4 % углекислого газа человек ощущает головную боль, шум в ушах, пульс замедляется, а при концентрации 10 % могут наступить потеря сознания и смерть. Именно по содержанию углекислого газа оценивают чистоту воздуха в жилых и общественных помещениях. В жилых помещениях оно не должно превышать 0,1 %.

Атмосферные изменения и их влияние на организм человека.

Роль оксидов серы и азота на образование кислотных дождей, их влияние на организм человека.

Изменение содержания углекислого газа в атмосфере, его влияние на здоровье.

Изменение содержания кислорода в атмосфере, его влияние на здоровье.

Рациональный выбор топлива.

Интенсификация фотосинтеза.

Очистка промышленных выбросов от углекислого газа.

Далее класс разбили на три группы, которые должны рассмотреть один из возможных вариантов решения этой проблемы: 1) рациональный выбор топлива; 2) интенсификация фотосинтеза; 3) очистка промышленных выбросов от углекислого газа. Учащиеся самостоятельно знакомились с научной и популярной литературой по данной проблеме, искали обоснования данных подходов с точки зрения химии и валеологии, составляли отчет о проделанной работе. На обобщающем уроке-презентации по теме каждая группа сообщила о результатах своей деятельности. Представители групп аргументированно доказывали, почему их вариант решения проблемы разумен, подтверждали свое мнение проведением демонстрационных опытов. Выбор эксперимента и разработку методики его проведения в некоторых случаях осуществляли сами учащиеся.

Участники каждой группы отмечали, что перенасыщенность воздуха диоксидом углерода отрицательно сказывается на состоянии и дыхательной системе человека (вызывая учащенное тяжелое дыхание, в некоторых случаях астматические заболевания, а иногда и приводя к летальному исходу), и кровеносной системы (недостаточное снабжение систем и органов кислородом, увеличение кислотности крови).

После выступлений групп я предлагаю учащимся класса выбрать оптимальный подход к решению проблемы и обосновать свой выбор., Опыт показывает, что, выдвигая и доказывая свои идеи, учащиеся в достаточной степени овладевают химическим материалом, приобретают способность применять знания, полученные при изучении одной темы, в конкретных ситуациях, возникающих при рассмотрении другой, а также умение обсуждать вопросы, вести грамотную, обоснованную дискуссию. Когда школьники сравнивают свой путь решения проблемы с другими возможными, у них развивается способности анализировать. Необходимость привлечение дополнительной информации способствует расширению кругозора учащихся, ненавязчиво заставляет их заинтересоваться не только проблемой, поставленной учителем, но и другими смежными вопросами.

Результаты анкетирования учащихся нашей школы подтверждают необходимость создания целостной методической системы направленной на формирование четко определенного неприятия наркотиков и других веществ подобного действия. Так, на вопрос: «Имеет ли смысл обсуждать проблемы наркомании на уроках химии и внеклассных мероприятиях?» — положительно ответили 95% учащихся 8—10 классов. Анализ ответов учащихся на вопросы анкеты подтверждает, что школьников различных возрастных групп интересуют вопросы потребления наркотических веществ, их воздействия на организм человека, а также способы борьбы с этим явлением. Они не только с интересом обсуждают причины распространения наркомании, но и выражают готовность активно участвовать в мероприятиях, направленных на антинаркотическую пропаганду. Поэтому урок пресс-конференция «Наркомания — чума ХХ века» является актуальной и важной формой антинаркотического воспитания школьников. Такая форма проведения урока способствует мотивации, активизации учащихся, формированию социальной, коммуникативной, информационной компетентностей участников образовательного процесса. Пресс-конференция проводилась в форме деловой игры. Проведению деловой игры предшествовала активная работа учащихся в группах: учащиеся собирали, анализировали информацию и готовили материалы к конференции, с каждым выступавшим проводились индивидуальные собеседования, готовились слайды и плакаты, визитные карточки, эмблемы, таблички с указанием ролей.

В материалах конференции разбирается природное происхождение, химический состав наркотических веществ, раскрываются социальные причины распространения наркотиков, их действие на организм, страшные последствия наркомании, рассматриваются меры наказания к распространителям наркотиков, прослеживаются междпредметные связи курсов химии, биологии, истории, обществознания, литературы.

Разработка такой пресс-конференции может использоваться учителями для проведения классных часов по антинаркотическому воспитанию, по пропаганде здорового образа жизни.

Рамки урока зачастую не позволяют в достаточной степени удовлетворить интерес учащихся к каким-то значимым и полезным для них вопросам.

Хочу отметить, что на мой взгляд главная задача учителя при организации проектной деятельности учащихся заключается не столько в поиске теоретического и фактического материала и даже не в результатах этой работы, сколько в создании у учащихся положительной мотивации, побуждению их к поиску.

Игровые технологии

Игра - это вид деятельности в условиях ситуаций, направленных на воссоединение общественного опыта, в котором складывается и совершенствуется самоуправление своим поведением.

 Примеры игр тренажеров:

«Убери лишнее» В предложенных ниже рядах присутствуют «лишние» формулы. Найдите их:

а) NaCl, AgNO3, KCl, KNO3;

б) H2S, CaSO4, HI, (NH4)2, S

«Третий лишний»  В каждой строчке по три формулы. Например:

BaO  CO2   CaO

HNO3  HCl  H2O Na2SO H2SO4   BaCl2  P2O5  SO  MgO

Задание для учащихся: в каждой строчке вычеркните формулу вещества, принадлежащего не к тому классу, к которому относятся два других. Задание выполняет один человек, но можно предложить его группе из пяти учащихся. Они работают по принципу эстафеты.

 «Логические цепочки».  Учитель задает начало фразы: «Алюминий - металл». Первый ученик повторяет его и придумывает продолжение со словами «потому что», «следовательно», «однако». Затем все сказанное повторяет и продолжает следующий ученик. Тот, кто не смог продолжить цепочку, выбывает из игры.

«Продолжи ряд»  Заданы несколько членов ряда. Нужно обнаружить закономерность чередования объектов и продолжить ряд:

а) Li, Al, As,….

б) F-, …, , Ar, ….

 «Лото наоборот» Играющим выдается карточка, на которой написаны формулы веществ:

CaO   HNO3   MgOHCl    P2O5   SO   CO2   NaOH  

Задача играющих состоит в том, чтобы на каждую клетку с формулой вещества наложить жетон с формулой вещества, имеющего противоположные химические свойства. Например, на формулу кислоты - формулу основания, на формулу основного оксида - формулу кислотного оксида и т.п.

Игра «Пирамида»  Учащиеся играют парами. К доске прикрепляем шесть карточек так, чтобы получилась пирамида. Каждая карточка имеет свой номер, на обратной стороне написано название тематического блока, например «учёные», «реакции» и.т.д.

Игроки выбирают номер карточки и должны за 30с угадать семь слов по данной теме. Один учащийся отгадывает слова, второй подсказывает. Подсказывать можно жестами, синонимами, нельзя использовать однокоренные слова. Слова написаны на листочке, которые выдаёт второму игроку учитель. За каждое угаданное слово учащиеся получают 1 балл. Во втором туре участники меняются ролями.

Таким образом, использование технологий ЛОО на уроках химии и во внеурочной работе в течении пяти лет дает высокие и стабильные результаты: позволяет учащимся реально оценивать свои возможности, повышается интерес к предмету, между учителем и учащимися устанавливаются партнерские отношения, снижается психологическое напряжение учащихся на уроках; повышается качество знаний и активность слабоуспевающих учащихся; исчезает страх перед проверкой знаний.

Используемая  литература:

1. С.В.Дендебер. Современные технологии в процессе преподавания химии: развивающее обучение, проблемное обучение, проектное обучение, кооперация в обучении, компьютерные технологии / С.В. Дендебер, О.В. Ключникова. - 2-е изд.- М.: 5 за знания, 2008.- 112с.- (методическая литература)

2. В.В. Лаврентьев Требования к уроку как основной форме организации учебного процесса в условиях личностно-ориентированного обучения / В.В. Лаврентьев // Завуч. - 2005. - № 1.

3. И.С. Якиманская. Личностно - ориентированное обучение в современной школе.- М.: «Сентябрь», 2000.